
 
1-WIRE® DEVICES   MICROCONTROLLERS   TINI - TINY INTERNET INTERFACES   May 14, 2003  

App Note 710: Dial-Up Networking with the 
DS80C400 Microcontroller

 

The DS80C400 networked microcontroller provides a ready solution for 
monitoring and controlling sensors/actuators over networks. Data can be 
transmitted via PPP to server for analysis and storage. This example uses a 
TINI® with a DS1923 1-Wire® temperature/humidity sensor packaged as an 
iButton® to collect data. Discussion on TINI PPP implementation is included.

 

As technology advances, large network availability greatly simplifies the process of 
microcontrollers monitoring and controlling sensors/actuators. Information can now be sent over 
the network to a central location for analysis and corrective action. For such an application, the 
DS80C400 networked microcontroller provides a ready solution. Besides being loaded with 
extensive peripherals, the DS80C400 silicon software implements a TCP/IP stack1. The Tiny 
InterNet Interfaces (TINI®) platform2, which includes a Java™ Virtual Machine (JVM), provides 
extensive support of IP networking. Although the DS80C400 includes an Ethernet interface, the 
TINI Runtime Environment (TRE) also supports dial-up networking using the point-to-point 
protocol (PPP). A compelling aspect of using PPP is that both endpoints of the connection can 
communicate over modems to leverage public communication networks and IP software 
infrastructure. This allows the deployment of remote embedded networking applications in 
outposts where an Ethernet network is not available, but the ubiquitous phone switch network is 
(Figure 1).

 
Figure 1. A remote DS80C400 running the TINI Runtime Environment dials up a server to 
forward data.

PPP Overview
PPP is a general-purpose protocol that supports data transfer over many physical media, 
including (but not limited to) serial, parallel, Ethernet, and cellular phones, such as general 
packet-radio service (GPRS) devices. PPP is widely used in dial-up networking application 

http://www.maxim-ic.com/appnotes10.cfm/ac_pk/1/ln/en
http://www.maxim-ic.com/appnotes10.cfm/ac_pk/17/ln/en
http://www.maxim-ic.com/appnotes10.cfm/ac_pk/37/ln/en


because it requires little configuration and is easy to set up. The only requirement for the 
physical media is full-duplex capability. The communication can be either synchronous or 
asynchronous. 

PPP is composed of three main components: 

1.  A method for encapsulating multiprotocol datagram over the same link. PPP 
encapsulation is based on the high-level data-link control (HDLC) format. Some 
encapsulation fields can be compressed if available bandwidth is limited. 

2.  A link control protocol (LCP) that establishes a connection, configures link options, 
detects errors, and terminates the link. 

3.  A family of network control protocols (NCP) that establish and configure corresponding 
network- layer protocols. 

PPP Operation
The Internet standard RFC 1661 describes PPP operation as a state machine going through 
different stages as the point-to-point link is configured, maintained, and terminated. Figure 2 
describes a simplified state diagram where PPP is divided into five distinct phases: dead, 
establish, authenticate, network, and terminate. PPP implements all phases except authenticate.

 
Figure 2. This simplified phase diagram illustrates PPP implementation described in RFC 1661. 

Link Dead Phase
Initial and ending phase of a link operation. The physical layer is not ready for packet transfer 
yet. When the physical layer is ready, an UP event is generated, and PPP proceeds to the link 
establishment phase.

Link Establishment Phase
The physical layer is up, and the link is negotiating transport options with its peer by exchanging 
LCP configuration packets. Only options independent of the network-layer protocol are 
configured at this stage. Once a configure-ACK packet has been sent and received, the PPP 
generates an OPENED event and proceeds to the next stage.

Authentication Phase
An optional phase that authenticates to the peer. On some links, such as dial-up networking, it is 



desirable for the link to authenticate before network-layer protocol packets can be exchanged. 
For such an implementation, a request for authentication must be sent during the link 
establishment phase.

Network-Layer Protocol Phase
After the link has been established and authentication has succeeded, the network-layer 
protocol is configured by exchanging NCP packets specific to the network layer supported. Each 
network-layer protocol has a unique NCP and must be negotiated separately. 

Link Termination Phase
A CLOSE event is generated when the PPP link is terminated because of carrier loss, 
authentication failure, link-quality failure, or the administrative closing of the link. LCP terminate 
packets are exchanged between peers. The network-layer protocol is informed of the closing 
link and takes appropriate action. The physical layer is disabled after receiving a terminate-ACK, 
or timeout. A DOWN event is then generated, and the PPP returns to the link dead phase.

TINI PPP
TINI uses RFC 1661 as a framework for PPP implementation. PPP serves strictly as a transport 
mechanism for IP datagrams over a serial link. In the native network stack, PPP exists below the 
IP module and above the serial port drivers. To alleviate programming complexity, the PPP 
stages are simplified further (Figure 3). 

 
Figure 3. This TINI PPP phase diagram illustrates how PPP is implemented on TINI. 

PPP is explained to an application developer through Java classes in the 
com.dalsemi.tininet.ppp package. The PPP states are event driven. ppp.up() establishes the 
link, authenticates, and sets up the network protocol. Password-authentication protocol (PAP) 
and challenge-handshake-authentication protocol (CHAP) are supported3. Once the link is 
configured, an UP event is generated and adds the PPP interface to the network stack so 
network traffic can be directed to that interface. ppp.close() issues a CLOSE event, brings the 
link down, and returns to the dead/terminate state. 



Example 1 shows fragments of a PPPClient implemented on the DS80C400. (Get the latest TINI 
firmware from ftp://ftp.dalsemi.com/pub/tini/ for updated code.) After a PPP object is created, the 
PPPClient is installed as the PPP object's PPPEventListener. PPP parameters are set, and the 
link is initiated with a series of atCommand. Once the link is established, ppp.up() is called to 
notify the network stack that PPP is now available for network traffic. The link is terminated with 
ppp.close(). 

Example 1. PPPClient implementation 

public class PPPClient extends Thread

   

implements PPPEventListener, 
CommPortOwnershipListener{
...
public void run(){

      

ppp = new PPP();
openSerialPort(portNumber);
// Add this object as a PPP event listener
ppp.addEventListener(this);
// Set the local and remote IP address
ppp.setLocalAddress(localAddress);
ppp.setRemoteAddress(remoteAddress); 
// Set client peer type options
// Set the ACCM to escape all octets
ppp.setRemoteAccm(0x00000000); 
ppp.setLocalAccm(0x00000000); 
ppp.setAuthenticate(false, true); 
// Set username and password
ppp.setUsername(username);
ppp.setPassword(password);
// Initialize modem
for (int i = 0; i < dialSequence.length; ++i)
atCommand(dialSequence[i]); 
// Set connected flag
connected = true;
// Issue up command to PPP FSM
ppp.up(serialPort);
// PPP connection is now established, we can now
// communicate with remote host sendData();
ppp.close();
closeSerialPort();

   
}
...

ftp://ftp.dalsemi.com/pub/tini/


} 

Example 2 demonstrates how a PPPEvent can be handled. Once the link is ready, and the UP 
event has been received, PPP is added as one of the network interfaces so IP packets can be 
forwarded to this interface. Whenever a CLOSE event is received, the network stack removes 
the PPP interface, terminating any network activity through PPP. 

Example 2. PPPEvent method 

/**
* PPP event listener interface
*/
public void pppEvent(PPPEvent ev){

   
switch (ev.getEventType()){
case PPPEvent.UP:

      

// PPP connection is up
ppp.addInterface(interfaceName);
interfaceActive = true;
break;
case PPPEvent.CLOSED:
// PPP connection is closed

         

if (interfaceActive){
interfaceActive = false;
ppp.removeInterface(interfaceName);
}
connected = false;
break;

      
default:
break;

   
}

}

Remote Humidity Data-Logger Example
In this article we write a powerful, networked application that takes full advantage of networking 
capabilities provided by a very economical, small form-factor computer. The example uses a 
TINI reference design called the TINIm400. This module provides a low-power, I/O-rich, low-part-



 

count embedded controller and data collection module. When combined with the TRE, robust 
networked data-collection systems require minimal software effort. The TINIm400 module 
includes flash ROM, RAM, a real-time clock, 1-Wire® network, parallel I/O, and asynchronous 
serial ports. This article presents a complete example that captures and logs data, connects 
over the PSTN (public switched-telephone network) using PPP to manage dial-up connections, 
and makes the data available to a remote server. Dial-up networking support makes the data 
logger truly remote. 

System Overview
Figure 4 shows the setup for demonstrating dial-up networking capabilities using analog 
modems. If phone lines or their equivalent are not available, the hardwired serial-to-serial 
connection can also be used in a test setup. 

 
Figure 4. A remote data-logging system uses generic modems to transfer data. 

The test configuration in Figure 4 includes the following equipment: 

●     A PPP module-running the DataLogger server 
●     A Windows® 2000 machine-running the DataLoggerServer software 
●     Two analog modems-one attached to the Win2K PC and the other attached to the serial 

port of the PPP module 
●     A humidity sensing circuit-collecting humidity data for logging 

The DS80C400 on the Stamp+ module has the TRE installed. The TRE platform supports ABM, 
C, and Java programming. The embedded firmware implements TCP/IP stack and provides 
framework for the PPP protocol. 

The PPP connection is made using two analog modems on either side of a phone line simulator. 
If two different phone lines are available, the public phone network can be used instead. To test 



the PPP interface, a dial-up network connection should be created. Once the connection is 
initiated, the following sequence of events occurs:

1.  TINI modem dials the server's modem. 
2.  The server's modem answers the incoming call. 
3.  PPP option negotiation begins. 
4.  Authentication information is transmitted from TINI to the remote server. 
5.  The server assigns an IP address to the TINI and notifies the TINI of the server's address. 

Software and Hardware Overview
Complete source code can be downloaded from 
ftp://ftp.dalsemi.com/pub/tini/reference_designs/TINIm400-030p/DataLogger.zip. Figure 5 shows 
humidity data is collected using a sensor circuit. The example sensor uses a DS1923 1-Wire 
temperature/humidity sensor packaged as an iButton®, although any 1-Wire device can be 
used with the DS80C400. 

 
Figure 5. A TINIm400 data logger collects humidity data using a sensor. 

TINI Client Software

ftp://ftp.dalsemi.com/pub/tini/reference_designs/TINIm400-030p/DataLogger.zip


The TINI DataLogger example demonstrates three concepts: 1-Wire networking, serial 
communications, and TCP/IP networking. Brief functionality descriptions of the most important 
classes are summarized below. 

The DataLogger Class

●     Retrieves parameters from the configuration file:
/etc/dataLogger.properties 
●     Creates an instance of HumidityLogger to capture sample 
●     Creates an instance of PPPDaemon to manage PPP connection 
●     Initiates outbound connections to the remote server over the network interface such as 
Ethernet or PPP 

The HumiditySensor Class
●     Handles communication with, and retrieves data from the DS1923

The HumidityLogger Class
●     Initializes and manages humidity sensors 
●     Writes log data to the output stream to the server 

The PPPDaemon Class
●     Dial-up client 
●     Establishes TCP/IP connections using a PPP interface 
●     Manages the physical data link 
●     Receives PPP event notification 
●     Notifies DataLogger of errors that occur in the physical data link

The PPPSerialLink Class
●     Implements the PPPDataLink interface 
●     Allows PPPDaemon to manage the data link 
●     Configures the serial port for the data link

The PPPModemLink Class
●     Subclass of PPPSerialLink 
●     Manages modem communications 
●     Monitors SerialPortEvent.CD (carrier detect) to detect if the modem hangs up 

The ModemCommand Class
●     Handles serial communication with the modem 
●     Throws DataLinkException in case of a timeout while waiting for the desired response 

Remote Data-Logging Server
The DataLoggerServer is a simple GUI server application developed to accept connection from 



TINI and download its current log. 

The DataLoggerServer Class
●     Displays log data 
●     Blocks on accept to wait for socket connection at PORT 
●     Builds logs and charts humidity and temperature changes over time 

Running the Example
Application files traditionally have been transferred to the TINI file system using the FTP protocol 
over an Ethernet interface. In order to be independent of the Ethernet interface, the ymodem file 
transfer protocol has been added to Slush and JavaKit. Ymodem allows files to be transferred to 
the TINI file system over the JavaKit serial link. Besides the application file, the DataLogger.tini, 
a /etc/.startup file containing the following text should be transferred to the TINI file system. 

#
# Starting DataLogger application from Startup file
#
setenv FTPServer disable
setenv TelnetServer disable
setenv SerialServer disable
#
initializeNetwork
#
java /DataLogger.tini

This startup file disables the serial server and allows the data-logger application access to the 
serial port. Once the application and startup files have been transferred, resetting the TINI 
allows the new startup file to be processed and the data-logger application to be started.

The first thing TINI sends to DataLoggerServer is an integer value that tells the server the 
number of log entries to expect. After the server reads this value, it loops through all entries, 
reading each individual sample. The server displays each entry and logs this information to a 
file. The DataLoggerServer is written in Java and requires a Java Runtime Environment for 
execution, the same execution environment used to run Slush. See www.java.sun.com for 
installation instructions.

After running the DataLogger for several minutes to allow it to acquire a few samples, 
DataLoggerServer is run. In this example each sample was time-stamped one minute apart. If 
DataLogger runs more than one hour, it fills its sample vector, resulting in 60 (MAX_SAMPLE) 
data samples. If it runs for days, weeks, or even months, it still gets MAX_SAMPLE samples, but 
they always represent readings taken within the last hour.



 
Figure 6. The PC screen sample displays the DataLoggerServer operation.

Conclusion
Implementing a dial-up network connection on the DS80C400 is straightforward. The TINI 
Runtime Environment provides user-friendly APIs that conceal details so developers can 
concentrate on their designs, using PPP as a utility. Even without a traditional phone network, 
the same applications can still run by replacing the modem with a GPRS wireless phone.

The TINIm400 can be configured to initiate or receive dial-up connections. For data logging, a 
central server can dial into the TINIm400 and retrieve data at periodic intervals. In the event of a 
local fault, the TINIm400 module can initiate a PPP dial-up connection to the central server to 
notify the system of the error. By using the TINIm400 to detect local faults, the central server 
can be dedicated to analyzing the retrieved data.



As with any embedded module, the hardware and algorithms used depend on the specific 
application. The rich I/O capability of the DS80C400 and flexibility of the TINI Runtime 
Environment make adding remote sensors/actuators to networks quick. 

Footnotes

1.  The silicon software supports IPv4/6 over Ethernet. 
2.  Application Note 708: Tiny InterNet Interfaces (TINI) 
3.  TRE Firmware Version 1.1 and later. 
4.  This example is derived from Chapter 7 of The TINI Specification and Developer's Guide, 

available at www.maxim-ic.com/TINIguide.

TINI, 1-Wire, and iButton are registered trademarks of Dallas Semiconductor.
Java is a trademark of Sun Microsystems.
Windows is a registered trademark of Microsoft Corp. 

More Information

DS1672: QuickView -- Full (PDF) Data Sheet -- Free Samples

DS1923: QuickView -- Full (PDF) Data Sheet -- Free Samples

DS2502: QuickView -- Full (PDF) Data Sheet -- Free Samples

DS80C390: QuickView -- Full (PDF) Data Sheet -- Free Samples

DS80C400: QuickView -- Full (PDF) Data Sheet -- Free Samples

DSTINIM400: QuickView -- Full (PDF) Data Sheet  

http://www.maxim-ic.com/TINIguide
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2750/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS1672.pdf
http://www.maxim-ic.com/samplescart.cfm?Action=Add&PartNo=DS1672&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/4379/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS1923.pdf
http://www.maxim-ic.com/samplescart.cfm?Action=Add&PartNo=DS1923&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2924/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2502.pdf
http://www.maxim-ic.com/samplescart.cfm?Action=Add&PartNo=DS2502&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2956/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS80C390.pdf
http://www.maxim-ic.com/samplescart.cfm?Action=Add&PartNo=DS80C390&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3609/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS80C400.pdf
http://www.maxim-ic.com/samplescart.cfm?Action=Add&PartNo=DS80C400&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3743/ln/en
http://pdfserv.maxim-ic.com/en/ds/DSTINIM400.pdf

